基于残差BP神经网络的变压器故障诊断

上传者: 38708707 | 上传时间: 2022-03-15 16:03:37 | 文件大小: 3.25MB | 文件类型: -
基于传统BP神经网络的变压器故障诊断方法,当网络模型达到一定的深度时,模型的诊断性能会趋向于饱和,无法进一步提升网络模型的诊断性能,此时加深网络模型的深度反而会导致模型的诊断性能有所下降。此外,在小样本数据下,传统BP神经网络仍无法取得较好的诊断准确率。因此,为了提高变压器故障诊断准确率以及在小样本数据下的诊断性能,提出了基于残差BP神经网络的变压器故障诊断方法。所提方法采用堆叠多个残差网络模块的方式加深BP神经网络的深度,将传统BP神经网络的恒等映射学习转化为残差BP神经网络中的残差学习。同时,在每个残差网络模块中,模块的输入信息可以在模块内跨层传输,使得每个模块的输入信息可以更好地向深层网络传递,从而在小样本数据下仍可以训练得到较好的诊断模型。实验结果表明,相较于传统深层BP神经网络和传统浅层BP神经网络,所提方法具有更高的诊断准确率,同时在小样本数据下也体现出较好的诊断性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明