DFT的matlab源代码-SAC-Scaling-Laws:使用机器学习在支持物上训练单原子催化剂的比例定律

上传者: 38707153 | 上传时间: 2022-06-22 17:20:21 | 文件大小: 21.83MB | 文件类型: ZIP
DFT的matlab源代码培训单原子催化剂的比例定律 该存储库包含使用各种机器学习方法基于物理描述符(从密度泛函理论计算获得的特征)训练缩放定律的工作流程。 比例定律是有用的替代模型,可用于快速预测所需特性和筛选催化剂材料,从而通过执行更少的量子计算来节省计算时间。 开发者 王一凡() 比例关系的开发是为了 结合,单金属原子在载体上的结合能 Ea,金属原子扩散的激活屏障 Ebind和Ea分别代表单个金属原子催化剂的热力学和动力学稳定性。 数据集 该数据集包括根据Ea_data.csv中的密度泛函理论(DFT)计算得出的载体上单个原子的属性。 9种支持 11种金属:Ag,Au,Co,Cu,Fe,Ir,Ni,Pd,Pt,Rh,Ru 99个采样点 使用的机器学习方法: LASSO回归 岭回归 弹力网 普通最小二乘(OLS)回归 基于符号回归的遗传规划(GP) 入门 gp_models:用于训练遗传程序设计模型的文件 ml_models:用于训练统计学习模型的文件 依存关系 :用于向量和矩阵运算 :用于绘图 :用于线性代数计算 :用于从Excel文件导入数据 :用于训练机器学习模型 :用于绘图

文件下载

资源详情

[{"title":"( 62 个子文件 21.83MB ) DFT的matlab源代码-SAC-Scaling-Laws:使用机器学习在支持物上训练单原子催化剂的比例定律","children":[{"title":"SAC-Scaling-Laws-master","children":[{"title":"images","children":[{"title":"table_of_content.png <span style='color:#111;'> 446.03KB </span>","children":null,"spread":false},{"title":"metal_support.png <span style='color:#111;'> 796.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"runtime.txt <span style='color:#111;'> 10B </span>","children":null,"spread":false},{"title":"gp_models","children":[{"title":"trees","children":[{"title":"ea_3.png <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false},{"title":"ea_1.png <span style='color:#111;'> 20.62KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"ea_0.png <span style='color:#111;'> 17.74KB </span>","children":null,"spread":false},{"title":"ea_2.png <span style='color:#111;'> 17.75KB </span>","children":null,"spread":false},{"title":"ea_4.png <span style='color:#111;'> 23.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"Ea_gp_models.csv <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"Ea_data.csv <span style='color:#111;'> 8.11KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"train_gp_Ea.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"ml_models","children":[{"title":"coefficient_unnormalized.csv <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"ridge","children":[{"title":"ridge_coef_heatmap.png <span style='color:#111;'> 219.91KB </span>","children":null,"spread":false},{"title":"ridge_a_vs_cv.png <span style='color:#111;'> 507.34KB </span>","children":null,"spread":false},{"title":"ridge_error_atom.png <span style='color:#111;'> 78.58KB </span>","children":null,"spread":false},{"title":"ridge_error.png <span style='color:#111;'> 69.22KB </span>","children":null,"spread":false},{"title":"ridge_parity.png <span style='color:#111;'> 220.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"lasso","children":[{"title":"lasso_a_vs_n.png <span style='color:#111;'> 404.80KB </span>","children":null,"spread":false},{"title":"lasso_coef_heatmap.png <span style='color:#111;'> 219.82KB </span>","children":null,"spread":false},{"title":"lasso_parity.png <span style='color:#111;'> 240.00KB </span>","children":null,"spread":false},{"title":"lasso_a_vs_cv.png <span style='color:#111;'> 743.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_Ebind.ipynb <span style='color:#111;'> 7.42MB </span>","children":null,"spread":false},{"title":"ridge_Ebind","children":[{"title":"ridge_Ebind_parity.png <span style='color:#111;'> 153.99KB </span>","children":null,"spread":false},{"title":"ridge_Ebind_a_vs_cv.png <span style='color:#111;'> 268.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"OLS","children":[{"title":"OLS_coef_heatmap.png <span style='color:#111;'> 219.47KB </span>","children":null,"spread":false},{"title":"OLS_parity.png <span style='color:#111;'> 161.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"lasso_Ebind","children":[{"title":"lasso_Ebind_a_vs_cv.png <span style='color:#111;'> 885.58KB </span>","children":null,"spread":false},{"title":"lasso_Ebind_parity.png <span style='color:#111;'> 229.10KB </span>","children":null,"spread":false},{"title":"lasso_Ebind_a_vs_n.png <span style='color:#111;'> 628.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"regression_tools.cpython-37.pyc <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"coefficient_normalized.csv <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"train_Ea.py <span style='color:#111;'> 27.27KB </span>","children":null,"spread":false},{"title":"Ea_data.csv <span style='color:#111;'> 8.11KB </span>","children":null,"spread":false},{"title":"regression_tools.py <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"train_Ebind.py <span style='color:#111;'> 16.04KB </span>","children":null,"spread":false},{"title":"DSL","children":[{"title":"DSL_parity.png <span style='color:#111;'> 245.89KB </span>","children":null,"spread":false},{"title":"DSL_parity_metal.png <span style='color:#111;'> 352.05KB </span>","children":null,"spread":false},{"title":"DSL_parity_support.png <span style='color:#111;'> 275.12KB </span>","children":null,"spread":false},{"title":"DSL_performance.png <span style='color:#111;'> 127.15KB </span>","children":null,"spread":false}],"spread":false},{"title":"enet_Ebind","children":[{"title":"enet_data.csv <span style='color:#111;'> 688B </span>","children":null,"spread":false},{"title":"enet_Ebind_a_vs_cv.png <span style='color:#111;'> 913.84KB </span>","children":null,"spread":false},{"title":"enet_Ebind_a_vs_n.png <span style='color:#111;'> 732.04KB </span>","children":null,"spread":false},{"title":"elastic_net.png <span style='color:#111;'> 106.48KB </span>","children":null,"spread":false},{"title":"enet_Ebind_parity.png <span style='color:#111;'> 229.10KB </span>","children":null,"spread":false}],"spread":false},{"title":"OLS_Ebind","children":[{"title":"OLS_Ebind_parity.png <span style='color:#111;'> 152.85KB </span>","children":null,"spread":false}],"spread":false},{"title":"GP","children":[{"title":"GP_parity.png <span style='color:#111;'> 248.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_Ea.ipynb <span style='color:#111;'> 9.50MB </span>","children":null,"spread":false},{"title":"enet","children":[{"title":"enet_data.csv <span style='color:#111;'> 694B </span>","children":null,"spread":false},{"title":"enet_a_vs_cv.png <span style='color:#111;'> 812.04KB </span>","children":null,"spread":false},{"title":"enet_a_vs_n.png <span style='color:#111;'> 520.10KB </span>","children":null,"spread":false},{"title":"enet_parity.png <span style='color:#111;'> 238.03KB </span>","children":null,"spread":false},{"title":"elastic_net.png <span style='color:#111;'> 97.22KB </span>","children":null,"spread":false},{"title":"enet_coef_heatmap.png <span style='color:#111;'> 219.77KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明