面向原油总氢物性预测的数据扩增预处理方法

上传者: 38706531 | 上传时间: 2021-11-29 17:23:11 | 文件大小: 2.09MB | 文件类型: -
针对原油总氢物性回归预测中核磁共振光谱数据不足的问题,结合深度学习相关理论,提出一种光谱数据扩增预处理方法.根据样本输入和标签的相关系数,在原始样本中加入随机噪声以生成虚拟样本;处理样本数据结构以利于卷积神经网络特征提取,并加入数据冗余改进该结构以进一步提高数据特征提取的完整性;搭建实现原油总氢物性回归预测的卷积神经网络(Regression forecasting convolutional neural network,RF-CNN).实验结果表明,对于总氢物性的回归预测,该数据扩增预处理方法不但可以解决原始数据训练中的过拟合现象,而且相比于传统的偏最小二乘(PLS)回归方法,更具稳定性和精确性.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明