基于改进YOLOv2的无标定3D机械臂自主抓取方法

上传者: 38706055 | 上传时间: 2021-09-18 17:09:22 | 文件大小: 2.01MB | 文件类型: PDF
提出了一种多物体环境下基于改进YOLOv2的无标定3D机械臂自主抓取方法。首先为了降低深度学习算法YOLOv2检测多物体边界框重合率和3D距离计算误差,提出了一种改进的YOLOv2算法。利用此算法对图像中的目标物体进行检测识别,得到目标物体在RGB图像中的位置信息; 然后根据深度图像信息使用K-means++聚类算法快速计算目标物体到摄像机的距离,估计目标物体大小和姿态,同时检测机械手的位置信息,计算机械手到目标物体的距离; 最后根据目标物体的大小、姿态和到机械手的距离,使用PID算法控制机械手抓取物体。提出的改进YOLOv2算法获得了更精准的物体边界框,边框交集更小,提高了目标物体距离检测和大小、姿态估计的准确率。为了避免了繁杂的标定,提出无标定抓取方法,代替了基于雅克比矩阵的无标定估计方法,通用性好。实验验证了提出的系统框架能对图像中物体进行较为准确的自动分类和定位,利用Universal Robot 3机械臂能够对任意摆放的物体进行较为准确的抓取。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明