使用血液分析数据调整优化 SVM 方法用于乳腺癌诊断-研究论文

上传者: 38704485 | 上传时间: 2021-12-15 15:39:06 | 文件大小: 1.17MB | 文件类型: -
作为全球女性中最常见的癌症之一,乳腺癌引起了研究人员的最多关注。 经证实,准确及早发现乳腺癌可以增加患者采取正确治疗方案并长期生存的机会。 本文旨在探讨可用于从常规血液分析数据预测乳腺癌的生物标志物的范围。 支持向量机(SVM)已经为癌症分类领域做出了重要贡献。 然而,不同的核函数配置及其参数会显着影响 SVM 分类器的性能。 为了提高 SVM 分类器对乳腺癌诊断的分类精度,本文提出了一种新的癌症分类算法,该算法基于使用网格搜索算法的智能算法优化 SVM 分类器的相关参数这些参数是: 高斯径向基函数 (GRBF) 核SVM分类器的参数g和C惩罚参数。 我们的实验表明,使用网格搜索的 SVM 参数优化总是在给定范围内找到接近最佳的参数组合,以评估所提出模型的性能,使用取自 UCI 库的乳腺癌科英布拉数据集。 在这个数据集时代,使用了体重指数 (BMI)、葡萄糖、胰岛素、稳态模型评估 (HOMA)、瘦素、脂联素、抵抗素和趋化因子单核细胞趋化蛋白 1 (MCP1) 属性。 在该数据集上将所提出方法的性能与其他方法的性能进行比较。 获得的结果显示了对最先进算法的改进,具有改进的性能参数,例如疾病预测准确性、灵敏度和更好的 F1 分数等。 资金声明:作者表示,这项研究没有获得外部资金。利益声明:作者声明没有利益冲突。道德批准声明:不需要。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明