上传者: 38702726
|
上传时间: 2022-08-03 20:03:42
|
文件大小: 1.93MB
|
文件类型: PDF
为了实现肺部病症信号的匹配识别,采用改进型自适应噪声的完全集合经验模态分解(ICEEMDAN)和多层感知机(MLP)相结合的肺音信号特征识别方法。采集肺音信号预处理后经过ICEEMDAN分解得到IMF分量并构造多维特征向量,输入多层感知机(MLP)对正常肺音、哮鸣音、干罗音和中湿罗音信号学习。测试结果表明,该分类方法比极限学习机(ELM)与BP神经网络匹配精准率更高,达到91.67%。