基于三维卷积神经网络的立体匹配算法

上传者: 38702726 | 上传时间: 2021-12-08 20:17:11 | 文件大小: 5.16MB | 文件类型: -
对于基于深度学习的立体匹配而言,模型的网络结构对算法精度的影响很大,而算法运行效率也是实际应用中需要考虑的重要因素。提出一种在视差维度上使用稀疏损失体进行立体匹配的方法。采用宽步长平移右视角特征图构建稀疏的三维损失体,使三维卷积模块所需的显存和计算资源均降低数倍。采用多类别输出的方式对匹配损失在视差维度上进行非线性上采样,并结合两种损失函数训练模型,在保证运行效率的同时提高算法精度。在KITTI测试集上,与基准算法相比,所提算法不仅提高了精度,而且运行时间缩短了约40%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明