上传者: 38702726
|
上传时间: 2021-12-08 20:17:11
|
文件大小: 5.16MB
|
文件类型: -
对于基于深度学习的立体匹配而言,模型的网络结构对算法精度的影响很大,而算法运行效率也是实际应用中需要考虑的重要因素。提出一种在视差维度上使用稀疏损失体进行立体匹配的方法。采用宽步长平移右视角特征图构建稀疏的三维损失体,使三维卷积模块所需的显存和计算资源均降低数倍。采用多类别输出的方式对匹配损失在视差维度上进行非线性上采样,并结合两种损失函数训练模型,在保证运行效率的同时提高算法精度。在KITTI测试集上,与基准算法相比,所提算法不仅提高了精度,而且运行时间缩短了约40%。