matlab中DW检验的代码-RetinaFace.pytorch:一个更快的RetinaFace工具pyPytorch

上传者: 38702417 | 上传时间: 2023-02-14 18:25:38 | 文件大小: 33.6MB | 文件类型: ZIP
matlab中DW检验的代码PyTorch 中的 RetinaFace 的实现。 模型大小只有1.7M,当Retinaface使用mobilenet0.25作为骨干网时。 我们还提供 resnet50 作为骨干网以获得更好的结果。 Mxnet中的官方代码可以找到。 移动或边缘设备部署 我们还为从 python 训练到 C++ 推理的边缘设备提供了一套人脸检测器。 WiderFace Val 单秤性能 当测试秤是原始秤时 风格 简单的 中等的 难的 预训练 批量大小 火车大小 ResNet50 95.48% 94.04% 84.43% 真的 24 840 Mobilenet0.25(原图比例) 90.70% 88.16% 73.82% 真的 32 640 Mobilenet0.25(替换了fpn为dw) 90.5% 87.5% 72.1% 真的 32 640 Mobilenet0.25(替换了fpn为dw,替换ssh为dw) 89.7% 86.7% 69.9% 真的 32 640 Mobilenet0.25(替换了fpn为dw,替换ssh为dw,outchannel=32) 89.6%

文件下载

资源详情

[{"title":"( 47 个子文件 33.6MB ) matlab中DW检验的代码-RetinaFace.pytorch:一个更快的RetinaFace工具pyPytorch","children":[{"title":"RetinaFace.pytorch-master","children":[{"title":"LICENSE.MIT <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"modules","children":[{"title":"multibox_loss.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 68B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"functions","children":[{"title":"prior_box.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"train.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"box_utils.py <span style='color:#111;'> 12.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"nms","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"py_cpu_nms.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"timer.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"mobilenetv3.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"retinaface.py <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"net.py <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"ghostnet.py <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"detect.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"convert_to_onnx.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"mobilenetV1X0.25_pretrain.tar <span style='color:#111;'> 3.65MB </span>","children":null,"spread":false},{"title":"mbv3_small.pth.tar <span style='color:#111;'> 19.30MB </span>","children":null,"spread":false},{"title":"mobilenet0.25_Final.pth <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false}],"spread":true},{"title":"cal_params.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"FDDB_Evaluation","children":null,"spread":false},{"title":"widerface_evaluate","children":[{"title":"box_overlaps.pyx <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"ground_truth","children":[{"title":"wider_face_val.mat <span style='color:#111;'> 388.45KB </span>","children":null,"spread":false},{"title":"wider_easy_val.mat <span style='color:#111;'> 399.45KB </span>","children":null,"spread":false},{"title":"wider_hard_val.mat <span style='color:#111;'> 414.15KB </span>","children":null,"spread":false},{"title":"wider_medium_val.mat <span style='color:#111;'> 403.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"evaluation.py <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 507B </span>","children":null,"spread":false}],"spread":true},{"title":"test_fddb.py <span style='color:#111;'> 9.18KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"curve","children":[{"title":"Widerface.jpg <span style='color:#111;'> 220.71KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 246.53KB </span>","children":null,"spread":false},{"title":"FDDB.png <span style='color:#111;'> 83.71KB </span>","children":null,"spread":false},{"title":"test.jpg <span style='color:#111;'> 108.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"data","children":[{"title":"config.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"retinaface_gt_v1.1","children":[{"title":"train","children":[{"title":"label.txt <span style='color:#111;'> 16.35MB </span>","children":null,"spread":false}],"spread":false},{"title":"test","children":[{"title":"label.txt <span style='color:#111;'> 888.59KB </span>","children":null,"spread":false}],"spread":false},{"title":"val","children":[{"title":"label.txt <span style='color:#111;'> 697.47KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 125B </span>","children":null,"spread":false},{"title":"FDDB","children":[{"title":"img_list.txt <span style='color:#111;'> 64.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"retinaface_gt_v1.1.zip <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"wider_face.py <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"data_augment.py <span style='color:#111;'> 7.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"test_widerface.py <span style='color:#111;'> 9.23KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明