基于最大分布加权均值嵌入的领域适应学习

上传者: 38699613 | 上传时间: 2023-02-25 10:31:42 | 文件大小: 260KB | 文件类型: PDF
最大均值差异仅用于反映样本空间总体的分布信息和全局结构信息,忽略了单个样本对全局度量贡献的差异性。为此,提出一种最大分布加权均值差异(MDWMD)度量方法,采用白化余弦相似性度量为源域和目标域的所有样本设计相应的分布权重,使得每个样本的分布差异信息在全局度量中均得以体现。进一步,在MDWMD基础上,结合联合分布调整思想,提出一种领域适应学习算法:基于最大分布加权均值嵌入的联合分布调整,同时对源域和目标域中的数据进行边缘概率分布调整和条件分布调整。实验结果表明,与现有典型的迁移学习和无迁移学习算法相比,所提算法在不同类型跨领域图片数据集上的分类精度较高。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明