人工智能风险分析技术研究进展

上传者: 38697123 | 上传时间: 2022-09-13 22:16:32 | 文件大小: 1.42MB | 文件类型: PDF
目前基于深度学习模型的预测在真实场景中具有不确定性和不可解释性,给人工智能应用的落地带来了不可避免的风险。首先阐述了风险分析的必要性以及其需要具备的3个基本特征:可量化、可解释、可学习。接着,分析了风险分析的研究现状,并重点介绍了笔者最近提出的一个可量化、可解释和可学习的风险分析技术框架。最后,讨论风险分析的现有以及潜在的应用,并展望其未来的研究方向。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明