Dboost:一种基于DBSCAN的高维数据聚类的快速算法

上传者: 38696176 | 上传时间: 2021-03-02 13:06:06 | 文件大小: 513KB | 文件类型: PDF
DBSCAN是一种经典的基于密度的聚类技术,在发现任意形状的聚类和处理噪声方面广为人知。 但是,面对高维数据时,密度计算非常耗时,这使得它在许多领域都效率低下,例如多文档摘要,产品推荐等。因此,如何有效地计算高维数据的密度成为了基于DBSCAN的群集技术的一个关键问题。 在本文中,我们提出了一种基于DBSCAN的高维数据聚类的快速算法,称为Dboost。 在我们的算法中,一种名为WAND#的分级检索技术改编被新颖地应用于改进密度计算而没有精度损失,并且我们通过减少WAND#的调用时间来进一步提高了这种加速。 对电线电压数据,Netflix数据集和微博语料库进行了实验。 结果表明,线电压数据和Netflix数据集可实现50倍以上的加速,而微博客数据可望实现100倍以上的加速。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明