Senta情感分析系统 v1.0

上传者: 38693720 | 上传时间: 2025-03-18 06:47:29 | 文件大小: 1.11MB | 文件类型: ZIP
为您提供Senta情感分析系统下载,Senta是一款百度开源的情感分析系统。情感分析旨在自动识别和提取文本中的倾向、立场、评价、观点等主观信息。它包含各式各样的任务,比如句子级情感分类、评价对象级情感分类、观点抽取、情绪分类等。情感分析是人工智能的重要研究方向,具有很高的学术价值。同时,情感分析在消费决策、舆情分析、个性化推荐等领域均有重要的应用,具有很高的商业价值。近日,百度正式发布情感预训练模型SKEP(Sentiment Kn

文件下载

资源详情

[{"title":"( 140 个子文件 1.11MB ) Senta情感分析系统 v1.0","children":[{"title":"AUTHORS <span style='color:#111;'> 308B </span>","children":null,"spread":false},{"title":"tokenization_wp.py.bak <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"ernie_one_sent_classification_en.py.bak <span style='color:#111;'> 14.52KB </span>","children":null,"spread":false},{"title":"ernie_onesentclassification_dataset_reader_en.py.bak <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"ernie_one_sent_classification_ch.py.bak <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"roberta_en.vocab.bpe <span style='color:#111;'> 445.62KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"下载说明.htm <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"roberta_en.encoder.json <span style='color:#111;'> 1017.87KB </span>","children":null,"spread":false},{"title":"infer.json <span style='color:#111;'> 10.51KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.absa_laptops.cls.json <span style='color:#111;'> 8.08KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.absa_laptops.cls.json <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.SST-2.cls.json <span style='color:#111;'> 6.97KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.SE-ABSA16_PHNS.cls.json <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.Chnsenticorp.cls.json <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.MPQA.orl.json <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.MPQA.orl.json <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.SST-2.cls.json <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.COTE_BD.oe.json <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.absa_laptops.infer.json <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.absa_laptops.infer.json <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.SE-ABSA16_PHNS.infer.json <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.SST-2.infer.json <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.COTE_BD.infer.json <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.MPQA.infer.json <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"roberta_skep_large_en.MPQA.infer.json <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"ernie_1.0_skep_large_ch.Chnsenticorp.infer.json <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"ernie_2.0_skep_large_en.SST-2.infer.json <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"roberta_large_en.config.json <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"ernie_1.0_large_ch.config.json <span style='color:#111;'> 352B </span>","children":null,"spread":false},{"title":"ernie_2.0_large_en.config.json <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 26.34KB </span>","children":null,"spread":false},{"title":"README.en.md <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"ernie_skep_pretrain_dataset_reader.py <span style='color:#111;'> 34.70KB </span>","children":null,"spread":false},{"title":"ernie_pretrain_dataset_reader.py <span style='color:#111;'> 34.46KB </span>","children":null,"spread":false},{"title":"base_trainer.py <span style='color:#111;'> 33.32KB </span>","children":null,"spread":false},{"title":"ernie_two_sent_classification_en.py <span style='color:#111;'> 27.54KB </span>","children":null,"spread":false},{"title":"roberta_skep_pretrain_dataset_reader_en.py <span style='color:#111;'> 20.47KB </span>","children":null,"spread":false},{"title":"roberta_pretrain_dataset_reader_en.py <span style='color:#111;'> 20.10KB </span>","children":null,"spread":false},{"title":"pretraining.py <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false},{"title":"tokenization_wp.py <span style='color:#111;'> 17.15KB </span>","children":null,"spread":false},{"title":"multi_process_eval.py <span style='color:#111;'> 16.92KB </span>","children":null,"spread":false},{"title":"transformer_encoder.py <span style='color:#111;'> 16.79KB </span>","children":null,"spread":false},{"title":"tokenization_utils.py <span style='color:#111;'> 14.67KB </span>","children":null,"spread":false},{"title":"roberta_one_sent_classification_en.py <span style='color:#111;'> 14.54KB </span>","children":null,"spread":false},{"title":"ernie_one_sent_classification_ch.py <span style='color:#111;'> 14.53KB </span>","children":null,"spread":false},{"title":"ernie_one_sent_classification_en.py <span style='color:#111;'> 14.52KB </span>","children":null,"spread":false},{"title":"ernie.py <span style='color:#111;'> 13.74KB </span>","children":null,"spread":false},{"title":"basic_dataset_reader_without_fields.py <span style='color:#111;'> 13.36KB </span>","children":null,"spread":false},{"title":"ernie_crf_sequence_label.py <span style='color:#111;'> 11.76KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false},{"title":"glue_task_trainer.py <span style='color:#111;'> 11.30KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.77KB </span>","children":null,"spread":false},{"title":"ernie_two_sent_classification_ch.py <span style='color:#111;'> 10.02KB </span>","children":null,"spread":false},{"title":"util_helper.py <span style='color:#111;'> 9.84KB </span>","children":null,"spread":false},{"title":"tokenization_spm.py <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"roberta_twosentclassification_dataset_reader_en.py <span style='color:#111;'> 8.90KB </span>","children":null,"spread":false},{"title":"ernie_classification.py <span style='color:#111;'> 8.86KB </span>","children":null,"spread":false},{"title":"ernie_twosentclassification_dataset_reader_en.py <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"roberta_classification.py <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false},{"title":"ernie_classification_field_reader.py <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":"bert.py <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"ernie_text_field_reader.py <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"sklearn_metrics.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"custom_trainer.py <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"util_helper.py <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"generate_label_field_reader.py <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"basic_dataset_reader.py <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"glue_eval.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"ernie_seqlabel_label_field_reader.py <span style='color:#111;'> 5.60KB </span>","children":null,"spread":false},{"title":"ernie_twosentclassification_dataset_reader_ch.py <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"elmo.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"custom_text_field_reader.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"ernie_onesentclassification_dataset_reader_ch.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"ernie_onesentclassification_dataset_reader_en.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"lanch.py <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"text_field_reader.py <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"scalar_array_field_reader.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"ernie_skep_multil_task_language_model.py <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"ernie_language_model.py <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"base_dataset_reader.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"data_set.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"ernie_multil_task_language_model.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"roberta_skep_language_model.py <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"scalar_field_reader.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"register.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"text_embedder.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"roberta_language_model.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"init.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"rule.py <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"args.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"vocabulary.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"log.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"params.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"base_field_reader.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明