matlab代码的优化分析-basic-multiple-interval-pseudospectral:本项目采用多区间伪谱方法解决最优控制

上传者: 38693528 | 上传时间: 2022-06-01 01:15:38 | 文件大小: 78KB | 文件类型: ZIP
matlab代码的优化分析自述文件(基本多间隔伪光谱) 该项目采用多区间伪谱方法来解决最优控制问题。 安装 下载 在 MATLAB 命令行窗口中运行(自动将项目文件添加到您的 MATLAB 路径、下载所需文件并打开示例) INSTALL_Basic_Pseudospectral 请参阅运行 Bryson-Denham 示例 open BD_main 理论和案例研究结果见技术报告 引文 该代码是以下出版物的补充材料: 赫伯博士。 解决最优控制问题的多区间伪谱方法的基本实现。 技术报告,工程系统设计实验室,UIUC-ESDL-2015-01,美国伊利诺伊州厄巴纳,2015 年 6 月。 描述 使用了两种数值方案:具有 LGL 节点的 Legendre 伪谱方法和具有 CGL 节点的 Chebyshev 伪谱方法。 使用 Bryson-Denham 问题的案例研究结果证明了用户选择网格参数的影响以及两种数值伪光谱方案之间的差异很小。 求解过程独立于 Bryson-Denham 问题测试,因此可以使用随附的代码解决其他最优控制问题。 本次投稿的主要目的是为多区间伪谱方法的基本实现提供参考。 结

文件下载

资源详情

[{"title":"( 52 个子文件 78KB ) matlab代码的优化分析-basic-multiple-interval-pseudospectral:本项目采用多区间伪谱方法解决最优控制","children":[{"title":"basic-multiple-interval-pseudospectral-master","children":[{"title":"optional","children":[{"title":".gitignore <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"readme_image.svg <span style='color:#111;'> 201.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"PS_Scaling.m <span style='color:#111;'> 1003B </span>","children":null,"spread":false},{"title":"PS_Nonlincon.m <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"LGL","children":[{"title":"LGL_weights.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"LGL_Dmatrix.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"LGL_nodes.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"PS_Solve.m <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"PS_Fmatrix.m <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"PS_Objective.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"PS_DefaultOpts.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"CGL","children":[{"title":"CGL_weights.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"CGL_Dmatrix.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"CGL_nodes.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"License <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"INSTALL_Basic_Pseudospectral.m <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":".gitignore <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"moon-lander","children":[{"title":".gitignore <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"ML_mayer.m <span style='color:#111;'> 875B </span>","children":null,"spread":false},{"title":"ML_boundary.m <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"ML_bounds.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"ML_deriv.m <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"ML_main.m <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"ML_lagrange.m <span style='color:#111;'> 919B </span>","children":null,"spread":false},{"title":"ML_path.m <span style='color:#111;'> 693B </span>","children":null,"spread":false},{"title":"ML_solution.m <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"ML_plot.m <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"ML_initial.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"bryson-denham","children":[{"title":"BD_main.m <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"BD_mayer.m <span style='color:#111;'> 880B </span>","children":null,"spread":false},{"title":"BD_boundary.m <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"BD_bounds.m <span style='color:#111;'> 968B </span>","children":null,"spread":false},{"title":"BD_plot.m <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"BD_deriv.m <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"BD_solution.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"BD_lagrange.m <span style='color:#111;'> 927B </span>","children":null,"spread":false},{"title":"BD_path.m <span style='color:#111;'> 832B </span>","children":null,"spread":false},{"title":"BD_initial.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"brachistochrone","children":[{"title":"Brach_bounds.m <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"Brach_path.m <span style='color:#111;'> 706B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"Brach_solution.m <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"Brach_lagrange.m <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"Brach_mayer.m <span style='color:#111;'> 893B </span>","children":null,"spread":false},{"title":"Brach_plot.m <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"Brach_boundary.m <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"Brach_main.m <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"Brach_deriv.m <span style='color:#111;'> 984B </span>","children":null,"spread":false},{"title":"Brach_initial.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"include","children":[{"title":".gitignore <span style='color:#111;'> 16B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明