matlab拟合图代码-fooof:将神经功率谱参数化为周期性和非周期性成分

上传者: 38693192 | 上传时间: 2024-04-21 12:54:42 | 文件大小: 594KB | 文件类型: ZIP
matlab拟合图代码FOOOF-拟合振荡和一个以上的f FOOOF是一种快速,有效且具有生理信息的工具,可以对神经功率谱进行参数化。 概述 功率谱模型将功率谱模型视为两个不同功能过程的组合: 非周期性分量,反映1 / f样特征,具有 可变数量的周期性分量(假定振荡),因为峰值上升到非周期性分量之上 这种模型驱动的方法可用于测量电生理数据(包括EEG,MEG,ECoG和LFP数据)的周期性和非周期性特性。 拟合模型以测量推定振荡的好处是,功率谱中的峰值可以根据其特定的中心频率,功率和带宽进行表征,而无需预先定义特定的目标频段并控制非周期性分量。 该模型还返回信号非周期性成分的量度,从而可以测量和比较对象内部和对象之间信号的1 / f类成分。 文献资料 可在上找到文档。 本文档包括: :带有激励性的示例,说明了为什么我们建议对神经功率谱进行参数化 :提供有关该模型以及如何应用该模型的分步指南 :演示示例分析和用例以及其他功能 :列出并描述了模块中所有可用的代码和功能 :回答频率询问的问题 :定义模块中使用的所有关键术语 :包含有关如何参考和报告使用该模块的信息 依存关系 FOOOF用Py

文件下载

资源详情

[{"title":"( 167 个子文件 594KB ) matlab拟合图代码-fooof:将神经功率谱参数化为周期性和非周期性成分","children":[{"title":".gitignore <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"layout.html <span style='color:#111;'> 400B </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 8.02KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"group_powers.npy <span style='color:#111;'> 19.66KB </span>","children":null,"spread":false},{"title":"freqs_2.npy <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"spectrum_2.npy <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"freqs_lfp.npy <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"spectrum_lfp.npy <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"spectrum.npy <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"freqs.npy <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"group_freqs.npy <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"FOOOF_report.png <span style='color:#111;'> 203.91KB </span>","children":null,"spread":false},{"title":"FOOOFGroup_report.png <span style='color:#111;'> 162.59KB </span>","children":null,"spread":false},{"title":"spectrum.png <span style='color:#111;'> 16.84KB </span>","children":null,"spread":false},{"title":"fit.py <span style='color:#111;'> 50.69KB </span>","children":null,"spread":false},{"title":"group.py <span style='color:#111;'> 23.29KB </span>","children":null,"spread":false},{"title":"plot_07-TroubleShooting.py <span style='color:#111;'> 17.45KB </span>","children":null,"spread":false},{"title":"plot_01-ModelDescription.py <span style='color:#111;'> 17.15KB </span>","children":null,"spread":false},{"title":"gen.py <span style='color:#111;'> 17.11KB </span>","children":null,"spread":false},{"title":"plot_BandByBand.py <span style='color:#111;'> 15.00KB </span>","children":null,"spread":false},{"title":"strings.py <span style='color:#111;'> 14.56KB </span>","children":null,"spread":false},{"title":"plot_DoYouEvenOscillate.py <span style='color:#111;'> 14.11KB </span>","children":null,"spread":false},{"title":"test_fit.py <span style='color:#111;'> 13.39KB </span>","children":null,"spread":false},{"title":"plot_transforms.py <span style='color:#111;'> 13.05KB </span>","children":null,"spread":false},{"title":"plot_04-MoreFOOOF.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"plot_03-FOOOFAlgorithm.py <span style='color:#111;'> 12.29KB </span>","children":null,"spread":false},{"title":"plot_06-FOOOFGroup.py <span style='color:#111;'> 11.80KB </span>","children":null,"spread":false},{"title":"plot_mne_example.py <span style='color:#111;'> 11.67KB </span>","children":null,"spread":false},{"title":"plot_BandRatios.py <span style='color:#111;'> 11.46KB </span>","children":null,"spread":false},{"title":"fm.py <span style='color:#111;'> 11.12KB </span>","children":null,"spread":false},{"title":"plot_PeriodicAperiodicFeatures.py <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"plot_08-FurtherAnalysis.py <span style='color:#111;'> 10.91KB </span>","children":null,"spread":false},{"title":"test_group.py <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"annotate.py <span style='color:#111;'> 9.92KB </span>","children":null,"spread":false},{"title":"plot_fit_fooof_3d.py <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false},{"title":"params.py <span style='color:#111;'> 9.52KB </span>","children":null,"spread":false},{"title":"plot_model_components.py <span style='color:#111;'> 9.45KB </span>","children":null,"spread":false},{"title":"plot_02-FOOOF.py <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"plot_line_noise.py <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"plot_manipulating_fooofs.py <span style='color:#111;'> 9.22KB </span>","children":null,"spread":false},{"title":"periodic.py <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"transform.py <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false},{"title":"style.py <span style='color:#111;'> 8.68KB </span>","children":null,"spread":false},{"title":"plot_IfYouFilterTheyWillCome.py <span style='color:#111;'> 8.51KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 7.99KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"plot_freq_by_freq_error.py <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false},{"title":"plot_simulated_power_spectra.py <span style='color:#111;'> 7.89KB </span>","children":null,"spread":false},{"title":"spectra.py <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"plot_power_spectra.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"plot_sim_params.py <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"plot_05-AperiodicFitting.py <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"plot_fooof_models.py <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"plot_failed_fits.py <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"test_io.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"funcs.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"periodic.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"aperiodic.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"modutils.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"test_gen.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"test_utils.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"test_utils.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"test_spectra.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"bands.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"test_params.py <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"fg.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"info.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"error.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"templates.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"reports.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"test_utils.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"test_funcs.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"test_periodic.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"test_styles.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"test_transform.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"make_doc_plots.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"download.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"tutils.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"settings.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"error.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"test_data.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"reports.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"params.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"conftest.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"test_info.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"test_aperiodic.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"test_io.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"test_strings.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明