基于卷积神经网络算法的高压断路器故障诊断

上传者: 38692928 | 上传时间: 2021-08-22 15:40:45 | 文件大小: 2.01MB | 文件类型: PDF
传统的高压断路器故障诊断方法太过于依赖经验,不能准确地反映特征量和故障模式之间的关系,诊断准确度不高。针对这个问题,采用卷积神经网络算法进行高压断路器故障诊断,结合高压断路器分合闸线圈电流特点建立诊断模型,通过输入零点故障特征参数进行学习训练,得到相应故障类型输出。仿真结果表明,所提算法的整体准确率高达93.68%,与其他基于神经网络的算法相比具有很大的优势。

文件下载

评论信息

  • m0_59590241 :
    你好!有数据集没?
    2021-11-28

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明