『ML』用Python实现聚类效果的评估(轮廓系数、互信息)

上传者: 38692043 | 上传时间: 2021-08-19 15:03:00 | 文件大小: 204KB | 文件类型: PDF
好的聚类:类内凝聚度高,类间分离度高。   本文介绍两种聚类评估方法,轮廓系数(Silhouette Coefficient)以及标准化互信息(NMI),并且用Python实现。 导航效果评估综述轮廓系数互信息参考文章 效果评估综述   这里直接贴上 聚类算法初探(七)聚类分析的效果评测   它摘自于中国科学院计算技术研究所周昭涛的硕士论文《文本聚类分析效果评价及文本表示研究》的第三章。建议先看看原文,可以对聚类评估有一个很好的了解。   综合来说,我们希望最终的聚类结果是:同一个簇内的点是紧密的,而不同簇之间的距离是较远的;同时,它也要与我们人工的判断相一致。   接下来介绍两种聚类评估方

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明