数据压缩预备知识(二)主成分分析法及其python实现

上传者: 38691703 | 上传时间: 2021-08-20 23:25:24 | 文件大小: 55KB | 文件类型: PDF
一、概述 主成分分析法(PCA)主要应用于数据降维。其思想是使用较少的变量来取代原先较多的变量,以实现节省数据量的效果。需要指出,若原始变量之间互相正交,即线性无关,则主成分分析法没有效果。 二、原理 假定有n个样本,每个样本有p个变量描述,则所有数据构成了一个n*p阶的矩阵X X = [[dat1], [dat2], ..... [datn]] 但我们希望通过q个变量来描述这些数据(q<p),最简单地,可以取之前p个变量的线性组合,记为Z。对于n中的第i个数据,有 Z[i,1] = a[1,1]*x[i,1] + a[1,2]*x[i,2] +...+ a[1,p]*x[i,p

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明