EKF、PF在目标跟踪中的研究

上传者: 38691669 | 上传时间: 2021-06-04 10:10:43 | 文件大小: 727KB | 文件类型: PDF
介绍两种目标跟踪算法—扩展卡尔曼滤波器(Extended Kalman Filter, EKF)、粒子滤波器(Particle filter, PF)。EKF利用泰勒级数方法,将非线性问题转化到线性空间,再利用卡尔曼滤波器进行滤波,并达到一阶估计精度。PF是一种采用蒙特卡罗采样的贝叶斯滤波方法,它将复杂的目标状态分布表示为一组加权值,通过寻找在粒子滤波分布中最大权值的粒子来确定目标最可能所处的状态分布,已成为复杂环境下进行目标跟踪的最好的方法。文中通过仿真实验,对二者的性能进行了仿真比较,结果证明在复杂的非高斯非线性环境中,PF的性能明显优于EKF,但计算复杂,耗时长。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明