不均衡数据下基于SVM的故障检测新算法

上传者: 38688820 | 上传时间: 2021-03-01 09:19:23 | 文件大小: 1.25MB | 文件类型: PDF
针对传统支持向量机(SVM)算法在数据不均衡情况下无法有效实现故障检测的不足,提出一种基于过抽样和代价敏感支持向量机相结合的故障检测新算法。该算法首先利用边界人工少数类过抽样技术(BSMOTE)实现训练样本的均衡。为减少人工增加样本带来的噪声影响,利用K近邻构造一个代价敏感的支持向量机(CSSVM)算法,利用每个样本的代价函数消除噪声样本对SVM算法分类精度的影响。将该算法应用在轴承故障检测中,并同传统的SVM算法,不同类代价敏感SVM-C算法,SVM和SMOTE相结合的算法进行比较,试验结果表明当样本不均衡时,建议算法的故障检测性能较其它算法有显著提高。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明