通过基于DDPG的深度强化学习对Biped机器人进行运动控制

上传者: 38688352 | 上传时间: 2022-05-24 10:29:06 | 文件大小: 907KB | 文件类型: PDF
在被动式Biped机器人的研究中,避免跌倒一直是研究的重要方向。 在本文中,我们提出了深度确定性策略梯度(DDPG)来控制Biped机器人在斜坡上的稳定行走。 为了提高DDPG的训练速度,本文中使用的DDPG通过并行参与者和优先体验重放(PER)进行了改进。 在模拟中,我们控制导致Biped机器人跌倒的不同初始状态。 控制后,两足动物机器人可以稳定行走,这表明DDPG可以有效地控制两足动物机器人的跌倒。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明