基于深度神经网络的天气智能识别模型

上传者: 38687968 | 上传时间: 2022-05-07 18:08:34 | 文件大小: 5.91MB | 文件类型: PDF
短时强降水、大风等强对流夭气危害巨大,对其进行自动识别存在相当大的技术困难。提岀一种基于深度神经网络的强对流夭气智能识别模型,以雷达回波图像和表征囯波移动路径的光流图像作为输λ,通过神经网络的自学习,寻求雷达图像与¨是否发生强对流天气”之间的函教映射关系;并运用数据集増强、代价函教优化和模型泛化性能优化等技术,解决了训练样本的不均衡问题,避免了模型训练过程陷λ局部极值的问题。实验结果表眀,该方法对强对流夭气识别的准确率达到96%,误报率低于60%。该方法也适用于对下击暴流等灾害性天气的自动识别。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明