Hadoop中MapReduce基本案例及代码(三)

上传者: 38687928 | 上传时间: 2023-01-03 20:20:54 | 文件大小: 101KB | 文件类型: PDF
c ce do
分区Partitioner 分区操作是shuffle操作中的一个重要过程,作用就是将map的结果按照规则分发到不同reduce中进行处理,从而按照分区得到多个输出结果。 Partitioner是partitioner的基类,如果需要定制partitioner也需要继承该类HashPartitioner是mapreduce的默认partitioner。 计算方法是:which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks 注:默认情况下,reduceTask数量为1 很多时候MR自带的分区规则并不能满足我们需求,为了实

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明