smote的matlab代码-DataMiningCase:数据挖掘(实战代码/欢迎讨论/大量注释/机器学习).你将习得,如:数据的处理、Li

上传者: 38687648 | 上传时间: 2023-02-20 00:00:39 | 文件大小: 24.47MB | 文件类型: ZIP
smote的matlab代码 DataMiningCase 流失预警模型(二分类),代码原型为本人在某银行做的流失模型,AUC:83%、召回率(覆盖率):19.4%,精确率:85%(数据是外部数据/代码已脱敏) 你将习得:数据的处理、LightGBM、sklearn包(里面含有:GridSearchCV寻找最优参、StratifiedKFold分层5折切分、train_test_split单次数据切分等)、stacking模型融合、画AUC图、画混淆矩阵图,并输出预测名单。 告诉你:是什么(WHAT)、怎么做(HOW)、为什么这么做(WHY)。 注释覆盖率为80%左右,旨在帮助快速入门,新手级,持续更新,提供免费支持,只需要一颗star 该项目涉及的如下: 商业理解 数据理解 数据处理(数据准备) 特征工程(数据准备) 建立模型 模型融合 模型评估及实验 画图 说明 本专题并不用于商业用途,转载请注明本专题地址,如有侵权,请务必邮件通知作者。 本人水平有限,代码搬到外部环境难免有遗漏错误的地方,望不吝赐教,万分感谢。 有代码疑惑的地方也请找我。 Email:909336740@qq.c

文件下载

资源详情

[{"title":"( 34 个子文件 24.47MB ) smote的matlab代码-DataMiningCase:数据挖掘(实战代码/欢迎讨论/大量注释/机器学习).你将习得,如:数据的处理、Li","children":[{"title":"DataMiningCase-master","children":[{"title":"py","children":[{"title":"importance_plt.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"auc_plot.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"metrics_ks.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"train_5_cross.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"over_smote_.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"just_num_leaves.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"train_2_cross.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"kde_plt.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"bar_plt.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"rfecv_.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"corr_plt.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"metrics_plot.py <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"model_fusion.py <span style='color:#111;'> 7.48KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitattributes <span style='color:#111;'> 33B </span>","children":null,"spread":false},{"title":"notebook","children":[{"title":".ipynb_checkpoints","children":[{"title":"test_code-checkpoint.ipynb <span style='color:#111;'> 65.95KB </span>","children":null,"spread":false},{"title":"模型融合-checkpoint.ipynb <span style='color:#111;'> 82.62KB </span>","children":null,"spread":false},{"title":"测试py文件包-checkpoint.ipynb <span style='color:#111;'> 21.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_code.ipynb <span style='color:#111;'> 65.95KB </span>","children":null,"spread":false},{"title":"py_bar","children":[{"title":"plt_data.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"skdata.py <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"skdata.cpython-37.pyc <span style='color:#111;'> 8.70KB </span>","children":null,"spread":false},{"title":"plt_data.cpython-37.pyc <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"模型融合.ipynb <span style='color:#111;'> 82.62KB </span>","children":null,"spread":false},{"title":"测试py文件包.ipynb <span style='color:#111;'> 21.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"doc","children":[{"title":"实验记录.xlsx <span style='color:#111;'> 12.08KB </span>","children":null,"spread":false},{"title":"实验分析.docx <span style='color:#111;'> 88.90KB </span>","children":null,"spread":false},{"title":"业务需求分析.md <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"1576639374150.png <span style='color:#111;'> 96.63KB </span>","children":null,"spread":false},{"title":"model_fusion.png <span style='color:#111;'> 107.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"数据理解.md <span style='color:#111;'> 800B </span>","children":null,"spread":false}],"spread":true},{"title":"assets","children":[{"title":"数据挖掘流程图.png <span style='color:#111;'> 205.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"data.zip <span style='color:#111;'> 23.78MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明