基于分层注意力网络的社交媒体谣言检测

上传者: 38687277 | 上传时间: 2022-05-06 10:37:15 | 文件大小: 1.33MB | 文件类型: PDF
在社交媒体谣言检测问题上, 现有的基于特征表示学习的研究工作大多数先把微博事件划分为若干个时间段, 再对每个时间段提取文本向量表示、全局用户特征等, 忽略了时间段内各微博间的时序信息, 且未利用到在传统机器学习方法中已取得较好效果的文本潜在信息和局部用户信息, 导致性能较低. 因此, 本文提出了一种基于分层注意力网络的社交媒体谣言检测方法. 该方法首先将微博事件按照时间段进行分割, 并输入带有注意力机制的双向 GRU 网络, 获取时间段内微博序列的隐层表示, 以刻画时间段内微博间的时序信息; 然后将每个时间段内的微博视为一个整体, 提取文本潜在特征和局部用户特征, 并与微博序列的隐层表示相连接, 以融入文本潜在信息和局部用户信息;最后通过带有注意力机制的双向 GRU 网络, 得到时间段序列的隐层表示,进而对微博事件进行分类. 实验采用了新浪微博数据集和Twitter数据集,实验结果表明,与目前最好的基准方法相比,该方法在新浪微博数据集和 Twitter 数据集上正确率分别提高了1.5% 和1.4%,很好地验证了该方法在社交媒体谣言检测问题有效性.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明