matlab中AIC代码及实例-ODMSiSY_2020_SI:这里提供了用于生成,分析和可视化本文中呈现的数据的脚本

上传者: 38683895 | 上传时间: 2023-03-12 22:25:23 | 文件大小: 19.67MB | 文件类型: ZIP
matlab中AIC代码及实例合成生物学中优化设计的模型选择 这里提供了用于生成,分析和可视化本文中提供的数据的脚本。 使用脚本需要RStan软件包,该软件包可在以下链接获得: 以及使用贝叶斯优化程序包的链接: 对于Matlab工具箱AMIGO2,请参考: 贝叶斯案例的数据组织在以下子文件夹(Bayesian_MS目录)中: 推理: ODE_Model1.stan是由Lugagne等人发布的带有模型1(M1)的stan统计模型脚本,用于对来自[1]的实验数据进行贝叶斯推断。 ODE_Model2.stan ,带有模型2(M2)的stan统计模型脚本,用于对来自[1]的实验数据进行贝叶斯推断。 ODE_Model3.stan ,带有模型3(M3)的stan统计模型脚本,用于对来自[1]的实验数据进行贝叶斯推断。 MultiExtractExp.R脚本,用于访问[1]中的实验数据和实验方案,以在推理之前生成要传递给stan模型的适当对象列表。 使用脚本DataExtraction.m生成csv文件。 DataExtraction.m脚本,用于从[1]中提取所需的实验数据和实验配置文件。 m

文件下载

资源详情

[{"title":"( 177 个子文件 19.67MB ) matlab中AIC代码及实例-ODMSiSY_2020_SI:这里提供了用于生成,分析和可视化本文中呈现的数据的脚本","children":[{"title":"BayesPredictions.ipynb <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false},{"title":"GaussianMixtureCompM1.R <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"BayesPredictions-Training.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"GaussianMixtureCompM23.R <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"evidencecomputation_Each_Multi_M4_GMM.R <span style='color:#111;'> 9.15KB </span>","children":null,"spread":false},{"title":"evidencecomputation_Each_Multi_M2_GMM.R <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"evidencecomputation_Each_Multi_M3_GMM.R <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Average_V2-checkpoint.ipynb <span style='color:#111;'> 42.63KB </span>","children":null,"spread":false},{"title":"fitGP.c <span style='color:#111;'> 191.92KB </span>","children":null,"spread":false},{"title":"square.py <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"stats.pyx <span style='color:#111;'> 15.37KB </span>","children":null,"spread":false},{"title":"Model1_Cython.c <span style='color:#111;'> 263.58KB </span>","children":null,"spread":false},{"title":"stats.cp36-win_amd64.pyd <span style='color:#111;'> 352.00KB </span>","children":null,"spread":false},{"title":"Model2_Cython.c <span style='color:#111;'> 257.66KB </span>","children":null,"spread":false},{"title":"gaussianprocess.cp36-win_amd64.pyd <span style='color:#111;'> 529.50KB </span>","children":null,"spread":false},{"title":"Model3_Cython.pyx <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"fitGP.cp36-win_amd64.pyd <span style='color:#111;'> 56.00KB </span>","children":null,"spread":false},{"title":"Model1_Cython.cp36-win_amd64.pyd <span style='color:#111;'> 96.50KB </span>","children":null,"spread":false},{"title":"gaussianprocess.pyx <span style='color:#111;'> 31.45KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Average_V2.ipynb <span style='color:#111;'> 42.63KB </span>","children":null,"spread":false},{"title":"Model3_Cython.c <span style='color:#111;'> 260.19KB </span>","children":null,"spread":false},{"title":"SolveALLCyGen.c <span style='color:#111;'> 175.13KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 952B </span>","children":null,"spread":false},{"title":"SolveALLCy.c <span style='color:#111;'> 181.85KB </span>","children":null,"spread":false},{"title":"stats.c <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"Model1_Cython.pyx <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"fitGP.pyx <span style='color:#111;'> 991B </span>","children":null,"spread":false},{"title":"SolveALLCy.cp36-win_amd64.pyd <span style='color:#111;'> 53.00KB </span>","children":null,"spread":false},{"title":"gaussianprocess.c <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"Model2_Cython.pyx <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"SolveALLCyGen.pyx <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":"Model2_Cython.cp36-win_amd64.pyd <span style='color:#111;'> 95.00KB </span>","children":null,"spread":false},{"title":"stats.py <span style='color:#111;'> 15.37KB </span>","children":null,"spread":false},{"title":"SolveALLCy.pyx <span style='color:#111;'> 1001B </span>","children":null,"spread":false},{"title":"Model3_Cython.cp36-win_amd64.pyd <span style='color:#111;'> 96.00KB </span>","children":null,"spread":false},{"title":"SolveALLCyGen.cp36-win_amd64.pyd <span style='color:#111;'> 41.50KB </span>","children":null,"spread":false},{"title":"Packages.pdf <span style='color:#111;'> 598.35KB </span>","children":null,"spread":false},{"title":"CompareMultiplicativeResults.ipynb <span style='color:#111;'> 718.63KB </span>","children":null,"spread":false},{"title":"ExtractReducedThetaDraws.R <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"OptimDataFilesGenerator.R <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":".Rhistory <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Multiplicative-NU05EI.ipynb <span style='color:#111;'> 454.49KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Multiplicative-NU15.ipynb <span style='color:#111;'> 279.72KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-GFP-MU15EI.ipynb <span style='color:#111;'> 252.24KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-GFP-Copy1.ipynb <span style='color:#111;'> 219.74KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-Multiplicative-Dynamic.ipynb <span style='color:#111;'> 524.08KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-RFP-checkpoint.ipynb <span style='color:#111;'> 524.33KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-GFP-checkpoint.ipynb <span style='color:#111;'> 193.50KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-RFP-checkpoint.ipynb <span style='color:#111;'> 276.36KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-Average-checkpoint.ipynb <span style='color:#111;'> 299.97KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Multiplicative-checkpoint.ipynb <span style='color:#111;'> 136.51KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-GFP-checkpoint.ipynb <span style='color:#111;'> 219.97KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Average-checkpoint.ipynb <span style='color:#111;'> 157.49KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Multiplicative-checkpoint.ipynb <span style='color:#111;'> 481.39KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-Average-checkpoint.ipynb <span style='color:#111;'> 350.46KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-RFP-checkpoint.ipynb <span style='color:#111;'> 309.42KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-Multiplicative-checkpoint.ipynb <span style='color:#111;'> 348.47KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-GFP-checkpoint.ipynb <span style='color:#111;'> 187.63KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Average-checkpoint.ipynb <span style='color:#111;'> 362.13KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-Multiplicative-checkpoint.ipynb <span style='color:#111;'> 314.83KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-GFP-checkpoint.ipynb <span style='color:#111;'> 249.54KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-RFP-checkpoint.ipynb <span style='color:#111;'> 225.81KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-GFP.ipynb <span style='color:#111;'> 219.97KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-GFP.ipynb <span style='color:#111;'> 249.54KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Average.ipynb <span style='color:#111;'> 362.13KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-RFP.ipynb <span style='color:#111;'> 309.42KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-Average.ipynb <span style='color:#111;'> 299.97KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-GFP.ipynb <span style='color:#111;'> 193.50KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-Multiplicative.ipynb <span style='color:#111;'> 136.51KB </span>","children":null,"spread":false},{"title":"BEDms-6Steps-Multiplicative.ipynb <span style='color:#111;'> 314.83KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Multiplicative.ipynb <span style='color:#111;'> 481.39KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-GFP.ipynb <span style='color:#111;'> 187.63KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-RFP.ipynb <span style='color:#111;'> 524.33KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-Multiplicative.ipynb <span style='color:#111;'> 348.47KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-RFP.ipynb <span style='color:#111;'> 276.36KB </span>","children":null,"spread":false},{"title":"BEDms-4Steps-Average.ipynb <span style='color:#111;'> 157.49KB </span>","children":null,"spread":false},{"title":"BEDms-2Steps-RFP.ipynb <span style='color:#111;'> 225.81KB </span>","children":null,"spread":false},{"title":"BEDms-8Steps-Average.ipynb <span style='color:#111;'> 350.46KB </span>","children":null,"spread":false},{"title":"ODE_Model2.stan <span style='color:#111;'> 9.12KB </span>","children":null,"spread":false},{"title":"ODE_Model3.stan <span style='color:#111;'> 9.85KB </span>","children":null,"spread":false},{"title":"masterRunOptim.R <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"MultiExtractExp.R <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"ODE_Model1.stan <span style='color:#111;'> 10.27KB </span>","children":null,"spread":false},{"title":"masterRun.R <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"DataExtraction.m <span style='color:#111;'> 8.53KB </span>","children":null,"spread":false},{"title":"ExtractingInitialPriorsLugagneLog.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"ODE_Model3_Function.stan <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"ConfidenceIntervalPlotsFunctionM2.R <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"ODE_Model2_Function.stan <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"ODE_Model1_Function.stan <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"ConfidenceIntervalPlotsFunctionM1.R <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"PostPredCheckSimulM3.R <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"PostPredCheckSimulM1.R <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"PostPredCheckSimulM2.R <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"ConfidenceIntervalPlotsFunctionM3.R <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"FrequentistPredictions.ipynb <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"ModelComparisonStatistics_V2_CV.m <span style='color:#111;'> 23.14KB </span>","children":null,"spread":false},{"title":"ModelComparisonStatistics_V2.m <span style='color:#111;'> 22.86KB </span>","children":null,"spread":false},{"title":"AMIGO_PEPostAnalysisCustom.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"ComparisonBayesianVsFrequentistAverage.m <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明