上传者: 38683488
|
上传时间: 2021-10-09 08:46:54
|
文件大小: 546KB
|
文件类型: -
提出了一种鲁棒化的基于变分贝叶斯的自适应卡尔曼滤波算法.该算法采用具有重尾特性的学生分布取代高斯分布来描述量测模型,减弱系统对于野值的敏感性;再利用变分贝叶斯方法对修正后的模型的时变参数进行逼近推断,在递推地估计状态的同时还能对变化的噪声方差进行跟踪,并更新引入的自由度参数,从而在自适应滤波的同时增强了鲁棒性.仿真实验证明了在野值存在且噪声变化的观测下该算法的自适应与鲁棒性.