上传者: 38682054
|
上传时间: 2021-11-18 16:23:42
|
文件大小: 543KB
|
文件类型: -
针对当前基于网络拓扑结构相似性的链路预测算法普遍存在精确度较低且适应性不强的问题,研究发现融合算法能够有效改善这些问题。提出了一种基于神经网络的融合链路预测算法,主要通过神经网络对不同链路预测相似性指标进行融合。该算法使用神经网络对不同相似性指标的数值特征进行学习,同时采用标准粒子群算法对神经网络进行了优化,并通过优化学习后的神经网络模型计算出融合指标。多个真实网络数据集上实验表明,该算法的预测精度明显高于融合之前的各项指标,并且优于现有融合方法的精度。