基于节点核心影响的复杂网络聚类新算法

上传者: 38681646 | 上传时间: 2021-04-08 14:11:16 | 文件大小: 1.39MB | 文件类型: PDF
在复杂的网络中,由节点的异构性标识的集群结构已成为一种常见且重要的拓扑属性。 因此,网络聚类方法对于研究复杂网络具有重要意义。 当前,许多典型的聚类算法都有一些缺点,例如不准确和收敛缓慢。 在本文中,我们通过计算节点的核心影响力提出了一种聚类算法。 聚类过程是对社会学中聚类形成过程的模拟。 该算法通过节点之间的中心性来检测具有核心影响的节点,并通过判别函数构建集群的核心结构。 接下来,通过优化方法对网络中的其余节点进行聚类后,该算法将获得最终的聚类结构。 在不同数据集上的实验表明,该算法的聚类精度优于经典聚类算法(Fast-Newman算法)。 它的聚类速度更快,并在准确揭示复杂网络的真实聚类结构方面发挥了积极作用。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明