基于关键点提取与优化迭代最近点的点云配准

上传者: 38680957 | 上传时间: 2021-10-14 16:57:31 | 文件大小: 15.53MB | 文件类型: -
对强噪声且密度不均匀的点云进行高效、高精度配准是一个难题。针对此难题,提出一种基于关键点提取与优化迭代最近点(ICP)的点云配准算法。在粗配准中,将体素格滤波与法向距离关键点的提取相结合,计算关键点的快速点特征直方图以进行特征匹配,然后采用对应关系估计优化随机采样一致性(RANSAC)算法以进行误匹配剔除。在精配准中,采用最优节点优先(BBF)算法搜索k-d tree最近点,设定动态阈值消除误配对,最后利用基于“点到三角面”模型的加速ICP算法计算配准向量。通过对模型点云和建筑物点云进行配准,将所提算法与其他常用的算法进行比较分析。实验表明,所提算法具有良好的稳健性和抗噪性,能显著提升配准速度和配准精度。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明