基于Fisher信息矩阵的过程数据时间序列分割:一种面向目标的基于Fisher信息的时间序列分割算法-matlab开发

上传者: 38680625 | 上传时间: 2022-05-11 02:14:37 | 文件大小: 580KB | 文件类型: ZIP
先进的化学过程工程工具,如模型预测控制或软传感器解决方案,需要适当的过程模型。 这些模型的参数识别需要具有高信息量的输入输出数据。 当无法应用基于模型的优化实验设计技术时,从历史数据中提取信息片段也可以支持系统识别。 我们开发了一种面向目标的基于 Fisher 信息的时间序列分割算法,旨在从历史过程数据中选择信息片段。 所使用的标准自下而上算法广泛用于过程数据的离线分析。 不同的段可以支持参数集的识别。 因此,我们建议使用从序列获得的 Fisher 信息矩阵的特征向量之间的 Krzanowski 相似系数,而不是使用 D 或 E 最优性作为比较两个输入序列(相邻段)的信息内容的标准。 两个应用示例证明了所提出方法的效率。 该算法能够从历史过程数据中提取具有参数集特定信息内容的段。 它也在: L. Dobos, J. Abonyi, 基于时间序列分割的 Fisher 信息矩阵过程数据分析

文件下载

资源详情

[{"title":"( 1 个子文件 580KB ) 基于Fisher信息矩阵的过程数据时间序列分割:一种面向目标的基于Fisher信息的时间序列分割算法-matlab开发","children":[{"title":"FisherSegment.zip <span style='color:#111;'> 580.48KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明