Runge-Kutta-Fehlberg (RKF78):Fehlberg 的 7 阶和 8 阶嵌入方法-matlab开发

上传者: 38678498 | 上传时间: 2021-09-29 23:06:20 | 文件大小: 2.89MB | 文件类型: ZIP
保证 IVP 解的准确性的一种方法是使用步长 h 和 h/2 解决问题两次,并在对应于较大步长的网格点上比较答案。 但是对于较小的步长,这需要大量的计算,并且如果确定一致性不够好,则必须重复。 Fehlberg 方法是尝试解决此问题的一种方法。 它有一个程序来确定是否使用了正确的步长 h。 在每个步骤中,都会对解决方案进行两种不同的近似处理并进行比较。 如果两个答案非常一致,则接受近似值。 如果两个答案不符合指定的准确度,则减小步长。 如果答案同意比所需的有效数字更多,则增加步长。

文件下载

资源详情

[{"title":"( 1 个子文件 2.89MB ) Runge-Kutta-Fehlberg (RKF78):Fehlberg 的 7 阶和 8 阶嵌入方法-matlab开发","children":[{"title":"Runge_Kutta_Fehlberg_7(8).zip <span style='color:#111;'> 2.89MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明