em算法matlab代码-Spatial-Pattern-Learning:这是使用概率参数模型对ARGs空间模式进行匹配的MATLABOOP

上传者: 38678022 | 上传时间: 2021-05-26 18:02:56 | 文件大小: 35.14MB | 文件类型: ZIP
em算法matlab代码空间模式识别 韦斯利·韦谦于03-09-17 更新 我已经在底层图形匹配算法和属性更新过程中进行了一些改进。 从V1.0开始有一些重大的代码更改,但是我还没有时间更新文档。 改进是巨大的,我们能够将具有嵌入式模式的图与具有随机差异的随机图分离: 内容 介绍 此程序包包含一个概率参数模型,可以对它进行训练以在ARGs上运行自然模式识别任务,该模型来自。 该软件包使用OOP在MATLAB中实现,可以很容易地更改收敛函数,为不同任务匹配兼容函数(例如,图像/视频检索,了解化学化合物的结构,发现基因调控模式等)。 代码说明 ######在本节中,我将解释代码库的基本结构以及如何使用它们。 基本组成 类组件 sprMDL.m是代表训练模型的最重要的类。 构造函数将获取示例ARG和组件数量的单元格数组,然后开始训练。 该模型使用EM算法进行训练,其收敛条件和最大迭代次数可以更改。 它具有许多模型ARG,它们代表模型中的不同组件以及与之相关的不同权重。 建立模型后,您可以要求模型中正在汇总的模式,或者新的ARG是否具有与给定样本ARG相似的模式,如果是,则该模式ARG是什么?

文件下载

资源详情

[{"title":"( 42 个子文件 35.14MB ) em算法matlab代码-Spatial-Pattern-Learning:这是使用概率参数模型对ARGs空间模式进行匹配的MATLABOOP","children":[{"title":"Spatial-Pattern-Learning-master","children":[{"title":"Paper","children":[{"title":"A graduated assignment algorithm for graph matching.pdf <span style='color:#111;'> 347.03KB </span>","children":null,"spread":false},{"title":"Spatial pattern discovery by learning a probabilistic parametric model from multiple attributed relational graphs.pdf <span style='color:#111;'> 713.90KB </span>","children":null,"spread":false},{"title":"sinkhorn.pdf <span style='color:#111;'> 347.93KB </span>","children":null,"spread":false},{"title":"Paper_Review.pptx <span style='color:#111;'> 993.69KB </span>","children":null,"spread":false},{"title":"Graph Matching.pptx <span style='color:#111;'> 296.70KB </span>","children":null,"spread":false},{"title":"~$Paper_Review.pptx <span style='color:#111;'> 165B </span>","children":null,"spread":false},{"title":"relaxation lableing.pdf <span style='color:#111;'> 342.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"mdl_ARG.m <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"heuristic.m <span style='color:#111;'> 491B </span>","children":null,"spread":false},{"title":"Graph Matching","children":[{"title":"graph_matching_old.m <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"graph_test_compare.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"heuristic.m <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"single_graph_test_compare.m <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"graph_matching.m <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"graph_matching_c.m <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"ARG.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"Graph Matching.pptx <span style='color:#111;'> 429.61KB </span>","children":null,"spread":false},{"title":"node.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"edge.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"graph_matching.m <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false},{"title":"result","children":[{"title":"result_heavy_deletion.jpg <span style='color:#111;'> 159.04KB </span>","children":null,"spread":false},{"title":"general profile.png <span style='color:#111;'> 144.35KB </span>","children":null,"spread":false},{"title":"50 nodes","children":[{"title":"result.mat <span style='color:#111;'> 33.61MB </span>","children":null,"spread":false},{"title":"result.png <span style='color:#111;'> 17.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"example_result_mult.mat <span style='color:#111;'> 406.14KB </span>","children":null,"spread":false},{"title":"result_half_noise.jpg <span style='color:#111;'> 62.00KB </span>","children":null,"spread":false},{"title":"example_result.mat <span style='color:#111;'> 98.00KB </span>","children":null,"spread":false},{"title":"result.jpg <span style='color:#111;'> 117.47KB </span>","children":null,"spread":false},{"title":"result_no_deletion.jpg <span style='color:#111;'> 53.30KB </span>","children":null,"spread":false},{"title":"result_tenth_noise.jpg <span style='color:#111;'> 61.23KB </span>","children":null,"spread":false},{"title":"graph matching profile.png <span style='color:#111;'> 132.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"ARG.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ModelTest.m <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"result.mat <span style='color:#111;'> 479.18KB </span>","children":null,"spread":false},{"title":"result.png <span style='color:#111;'> 19.22KB </span>","children":null,"spread":false},{"title":"Graph Matching.pptx <span style='color:#111;'> 407.53KB </span>","children":null,"spread":false},{"title":"node.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"sprMDL.m <span style='color:#111;'> 21.35KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 16.89KB </span>","children":null,"spread":false},{"title":"edge.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明