matlab2018b函数代码-pansharpening-cnn-matlab-version:这是基于目标自适应CNN的Pansharpe

上传者: 38678022 | 上传时间: 2021-08-30 19:57:28 | 文件大小: 9.06MB | 文件类型: ZIP
matlab2018b函数代码pansharpening-cnn-matlab-version 是pansharpening方法的高级版本,具有残差学习,不同的损失和目标自适应阶段。 这是代码的matlab版本,适用于Python。 团队成员 朱塞佩·斯卡帕(Giuseppe Scarpa); Sergio Vitale(联系人); 戴维·科佐利诺(Davide Cozzolino)。 执照 那不勒斯费德里科第二大学图像处理研究小组('GRIP-UNINA')版权所有(c)2018。 版权所有。 这项工作应仅用于非营利目的。 通过下载和/或使用这些文件中的任何一个,您暗含同意许可证的所有条款,如文件LICENSE.txt(包含在此目录中)所指定 系统要求: Matlab2018b or higher versions, with deep learning toolboxes. The running on previous Matlab versions is not guaranteed. 用于以下方面的MATLAB软件包: a) PNN [Masi et al. (2016)]

文件下载

资源详情

[{"title":"( 34 个子文件 9.06MB ) matlab2018b函数代码-pansharpening-cnn-matlab-version:这是基于目标自适应CNN的Pansharpe","children":[{"title":"pansharpening-cnn-matlab-version-master","children":[{"title":"README.txt <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"TestPNNplus","children":[{"title":"testPNNplus.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"imgWV2.mat <span style='color:#111;'> 3.28MB </span>","children":null,"spread":false},{"title":"imgGeoEye1.mat <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"imgIkonos.mat <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"License.txt <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"Matlab_utils","children":[{"title":"image_quantile.m <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":"load_net.m <span style='color:#111;'> 922B </span>","children":null,"spread":false},{"title":"save_net.m <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"image_stretch.m <span style='color:#111;'> 299B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"PNNplus_Matlab_code","children":[{"title":"WV3_PNN_noIDX_model.mat <span style='color:#111;'> 293.51KB </span>","children":null,"spread":false},{"title":"load_layers.m <span style='color:#111;'> 878B </span>","children":null,"spread":false},{"title":"WV2_PNN_model.mat <span style='color:#111;'> 350.15KB </span>","children":null,"spread":false},{"title":"model_scope.m <span style='color:#111;'> 407B </span>","children":null,"spread":false},{"title":"ft_learning_rate.m <span style='color:#111;'> 688B </span>","children":null,"spread":false},{"title":"IKONOS_PNNplus_model.mat <span style='color:#111;'> 177.02KB </span>","children":null,"spread":false},{"title":"WV2_PNNplus_model.mat <span style='color:#111;'> 296.94KB </span>","children":null,"spread":false},{"title":"WV3_PNNplus_model.mat <span style='color:#111;'> 295.81KB </span>","children":null,"spread":false},{"title":"PNNplus.m <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"fine_tune.m <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"IKONOS_PNN_noIDX_model.mat <span style='color:#111;'> 176.66KB </span>","children":null,"spread":false},{"title":"interp23tap.m <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"input_preparation_.m <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"PNN.m <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"GeoEye1_PNNplus_model.mat <span style='color:#111;'> 225.81KB </span>","children":null,"spread":false},{"title":"maeRegressionLayer.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"resize_images.m <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"GeoEye1_PNN_model.mat <span style='color:#111;'> 254.11KB </span>","children":null,"spread":false},{"title":"input_preparation.m <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"GeoEye1_PNN_noIDX_model.mat <span style='color:#111;'> 225.87KB </span>","children":null,"spread":false},{"title":"WV3_PNN_model.mat <span style='color:#111;'> 350.65KB </span>","children":null,"spread":false},{"title":"WV2_PNN_noIDX_model.mat <span style='color:#111;'> 295.33KB </span>","children":null,"spread":false},{"title":"IKONOS_PNN_model.mat <span style='color:#111;'> 185.14KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明