Faster-RCNN详解

上传者: 38677255 | 上传时间: 2021-12-16 18:53:43 | 文件大小: 336KB | 文件类型: -
1 Faster-RCNN (1)输入测试图像; (2)将整张图片输入CNN,进行特征提取; (3)用RPN生成建议窗口(proposals),每张图片生成300个建议窗口; (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个RoI生成固定尺寸的feature map; (6)利用Softmax Loss(探测分类概率) 和Smooth L1 Loss(探测边框回归)对分类概率和边框回归(Bounding box regression)联合训练. 1.1 Conv layers 包含了conv,pooling,relu三种层 1.1

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明