批量归一化和残差网络

上传者: 38675797 | 上传时间: 2021-10-10 20:22:59 | 文件大小: 252KB | 文件类型: -
1.由来: 由google2015年提出,深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层神经网络更加容易和稳定。 2.作用 BN的作用就是将这些输入值或卷积网络的张量进行类似标准化的操作,将其放缩到合适的范围,从而加快训练速度;另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性 3.操作阶段 4.操作流程 计算每一层深度的均值和方差 对每一层设置2个参数,γ和β。假设第1深度γ=2、β=3;第2深度γ=5、β=8。 使用缩放因子γ和移位因子β来执行此操作。 随着训练的进行,这些γ和β也通过反向传播学习以提高准确性。这就要求为每一层学习2个

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明