CNet:用于语义分割的上下文感知网络

上传者: 38674223 | 上传时间: 2022-03-04 10:04:35 | 文件大小: 402KB | 文件类型: -
语义分割是计算机视觉中的重大挑战之一。 最近,深度卷积神经网络(DCNN)在大多数计算机视觉任务中都取得了巨大的成功。 但是,就语义分割而言,DCNN方法仍然难以充分利用上下文信息并确定对象的精细边界。 在本文中,我们提出了一种上下文感知网络(CNet),该网络利用健壮的上下文信息来改善分割结果。 CNet具有两个重要组成部分:1)特征收集模块(FCM),其构造为通过不同的接受域提取低级上下文特征,包括纹理,布局,边界,局部和全局关系,以补充高级特征学习,以及2)名为ResGate的新颖层,开发该层是为了从FCM中选择健壮的上下文特征。 这两个组合的组件可以彻底探索上下文信息,以提高边界分割的准确性。 我们在流行的PASCAL VOC2012数据集上评估了所提出的方法,并与相关方法相比获得了有希望的性能,特别是在相似对象或复杂场景中的对象的情况下。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明