matlab代码先保存在运行-HyperDenseNet:该存储库包含HyperDenseNet的代码,HyperDenseNet是超密集连接

上传者: 38673909 | 上传时间: 2023-04-04 15:37:36 | 文件大小: 838KB | 文件类型: ZIP
matlab代码先保存在运行超密集网 pytorch的新版本已实施 该存储库将包含HyperDenseNet的代码,HyperDenseNet是超密集连接的CNN,用于在多模式图像场景中分割医学图像。 除其他外,该网络在MRBrainS MICCAI挑战赛中排名第一 如果您发现这项工作对您的研究有用,请考虑引用以下工作: Dolz J,Gopinath K,Yuan J,Lombaert H,Desrosiers C,Ben Ayed I.`` IEEE TMI.2018年10月30日。 Dolz J,Desrosiers C,Wang L,Yangg J,Shen D,Ben Ayed I.“。IEEE国际生物医学成像研讨会(ISBI),616-620 拟议的HyperDenseNet的一部分的详细信息。 内容 要求 该代码已用Python(2.7)编写,并且需要 您还应该已经安装 (可选)该代码允许以Matlab和Nifti格式加载图像。 如果您想使用nifti格式,则应安装 由于您现在可能无法共享医学数据,因此我没有在相应的文件夹中包含任何样本。 为了进行实验,您必须将数据包括在

文件下载

资源详情

[{"title":"( 35 个子文件 838KB ) matlab代码先保存在运行-HyperDenseNet:该存储库包含HyperDenseNet的代码,HyperDenseNet是超密集连接","children":[{"title":"HyperDenseNet-master","children":[{"title":"src","children":[{"title":"generateROI.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"HyperDenseNet","children":[{"title":"Modules","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"General","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Utils.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"Evaluation.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"read.txt <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"IO","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"ImgOperations","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"imgOp.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"loadData.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"saveData.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"sampling.py <span style='color:#111;'> 14.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"NeuralNetwork","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"layerOperations.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"ActivationFunctions.py <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"Parsers","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"parsersUtils.py <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"LiviaSoftmax.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"HyperDenseNet.py <span style='color:#111;'> 46.27KB </span>","children":null,"spread":false},{"title":"startTesting.py <span style='color:#111;'> 12.43KB </span>","children":null,"spread":false},{"title":"startTraining.py <span style='color:#111;'> 12.53KB </span>","children":null,"spread":false},{"title":"generateNetwork.py <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false},{"title":"HyperDenseNetConvLayer.py <span style='color:#111;'> 12.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"networkSegmentation.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"HyperDenseNet_Segmentation.ini <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"networkTraining.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"HyperDenseNet_Config.ini <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"processLabels.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"License <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false},{"title":"Images","children":[{"title":"HyperDenseNet_Module.png <span style='color:#111;'> 306.11KB </span>","children":null,"spread":false},{"title":"WeightsNorm_1_0.png <span style='color:#111;'> 233.88KB </span>","children":null,"spread":false},{"title":"Readme.txt <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"iSEG_Images.png <span style='color:#111;'> 289.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明