基于小波的技术来预测重度抑郁症的治疗结果

上传者: 38670983 | 上传时间: 2021-03-15 12:06:07 | 文件大小: 1.62MB | 文件类型: PDF
严重抑郁症(MDD)的治疗管理一直具有挑战性。 但是,基于脑电图(EEG)预测抗抑郁药治疗结果可能有助于抗抑郁药的选择,并最终改善MDD患者的生活质量。 在这项研究中,提出了一种涉及预处理.EEG数据的机器学习(ML)方法,以对选择性5-羟色胺再摄取抑制剂(SSRIs)进行此类预测。 为此目的,实验数据的采集涉及34位MDD。患者和30位健康对照。 因此,基于小波变换(WT)分析,构造了包含脑电数据时频分解的特征矩阵,称为脑电数据矩阵。 但是,所得的EEG数据矩阵具有较高的维数。 因此,根据标准,即接收机工作特性(ROC),基于基于等级的特征选择方法来进行尺寸缩小。 结果,在分类模型(即逻辑回归(LR)分类器)的训练和测试过程中,最重要的特征被识别并被进一步利用。 最后,通过10次交叉验证(10-CV)的100次迭代来验证LR.model。 将分类结果与短时傅立叶变换(STFT)分析和经验模态分解(EMD)进行了比较。 从额叶和颞叶脑电图数据中提取的小波特征具有统计学意义。 与STFT和EMD等其他时频方法相比,WT分析显示出最高的分类准确性,即准确度= 87.5%,灵敏度= 95%和

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明