多元时间序列的基于相关性的动态时间规整:结合了DTW和PCA的相似性度量。-matlab开发

上传者: 38670949 | 上传时间: 2021-12-25 17:04:27 | 文件大小: 8KB | 文件类型: -
一种称为基于相关的动态时间扭曲 (CBDTW) 的新算法,它结合了基于 DTW 和 PCA 的相似性度量。 为了保持相关性,多元时间序列被分割,DTW 的局部差异函数源自 SPCA。 这些段是通过使用特殊的 PCA 相关成本通过自下而上的细分获得的。 我们的新技术符合两个数据库的要求,即 2004 年签名验证竞赛数据库和常用的 AUSLAN 数据集。 我们表明,在具有复杂相关结构的数据集的情况下,CBDTW 优于标准 SPCA 和最常用的基于欧几里德距离的多元 DTW。 该算法也描述在: J. Abonyi, F. Szeifert,用于识别模糊分类器的监督模糊聚类,模式识别快报,24(14) 2195-2207,2003 年 10 月

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明