基于主成分分析与局部二值模式的高光谱图像分类

上传者: 38670391 | 上传时间: 2021-11-29 05:33:02 | 文件大小: 8.43MB | 文件类型: -
提出了两种基于主成分分析与局部二值模式的高光谱图像分类算法。利用主成分分析去除高光谱图像的谱间冗余信息,对降维后的图像利用局部二值模式进行空间纹理特征分析,采用稀疏表示分类和支持向量机分别对提取的特征进行分类。其通过将主成分分析与局部二值模式相结合对高光谱图像进行特征提取,保证了高光谱图像的谱间冗余的有效去除,同时保护了高光谱图像的空间局部邻域信息,因此,此类算法不但能充分挖掘高光谱图像的谱间-空间特征,在较大程度上提高分类精度和Kappa系数,而且在高斯噪声环境中和小样本情况下也具有良好的分类性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明