用Python实现机器学习算法——简单的神经网络

上传者: 38669674 | 上传时间: 2023-07-23 12:51:37 | 文件大小: 199KB | 文件类型: PDF
本文来自于网络,文章详细介绍了使用Python实现机器学习算法的损失函数、反向传播过程等相关知识。在这一章节里,我们将实现一个简单的神经网络架构,将2维的输入向量映射成二进制输出值。我们的神经网络有2个输入神经元,含6个隐藏神经元隐藏层及1个输出神经元。我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为W,隐藏层和输出层之间的权重矩阵为W。除了连接神经元的权重向量外,每个隐藏和输出的神经元都会有一个大小为1的偏置量。我们的训练集由m=750个样本组成。因此,我们的矩阵维度如下:训练集维度:X=(750,2)目标维度:Y=(750,1)W维度:(

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明