融合序列后向选择与支持向量机的混合式特征选择算法

上传者: 38669674 | 上传时间: 2022-05-13 15:05:33 | 文件大小: 1.2MB | 文件类型: PDF
维度灾难是机器学习任务中的常见问题,特征选择算法能够从原始数据集中选取出最优特征子集,降低特征维度.提出一种混合式特征选择算法,首先用卡方检验和过滤式方法选择重要特征子集并进行标准化缩放,再用序列后向选择算法(SBS)与支持向量机(SVM)包裹的SBS-SVM算法选择最优特征子集,实现分类性能最大化并有效降低特征数量.实验中,将包裹阶段的SBS-SVM与其他两种算法在3个经典数据集上进行测试,结果表明,SBS-SVM算法在分类性能和泛化能力方面均具有较好的表现.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明