matlab的egde源代码-sdm_face_alignment:人脸对准的监督下降方法(SDM)的Matlab实现

上传者: 38669618 | 上传时间: 2022-05-07 14:14:54 | 文件大小: 42.39MB | 文件类型: ZIP
matlab的egde源代码Matlab监督下降法的实现 用于面对齐的监督下降方法(SDM)的简单Matlab实现。 我提供了培训和测试模块以及300W数据集的LFPW子集的一种经过训练的模型。 您可以找到我的实现的原始文件: Xiong et F.De la Torre,监督下降法及其在人脸对准中的应用,CVPR 2013。 ================================================== ========================= 依赖关系: Vlfeat库: libLinear: 使用的数据集: [300瓦] 如何使用: 从上面的链接下载300-W数据(即LFPW),并将其放入“ ./data”文件夹,然后在setup.m中将数据集路径更正为数据集文件夹 mkdir -p数据 例如: options.trainingImageDataPath\n='./data/lfpw/trainset/'; options.trainingTruthDataPath\n='./data/lfpw/trainset/'; options.testingI

文件下载

资源详情

[{"title":"( 71 个子文件 42.39MB ) matlab的egde源代码-sdm_face_alignment:人脸对准的监督下降方法(SDM)的Matlab实现","children":[{"title":"sdm_face_alignment-master","children":[{"title":"README.md <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"run_matlab <span style='color:#111;'> 61B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 17.60KB </span>","children":null,"spread":false},{"title":"source","children":[{"title":"test","children":[{"title":"cascaded_regress.m~ <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"do_testing.m~ <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"face_alignment.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"cascaded_regress.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"face_alignment.m~ <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"train","children":[{"title":"do_learn_variation.m <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"normalize_first_shape.m~ <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"do_learn_shape.m~ <span style='color:#111;'> 676B </span>","children":null,"spread":false},{"title":"learn_single_regressor.m <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"build_shape_model.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"do_learn_variation.m~ <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"do_learn_shape.m <span style='color:#111;'> 787B </span>","children":null,"spread":false},{"title":"learn_single_regressor.m~ <span style='color:#111;'> 8.83KB </span>","children":null,"spread":false},{"title":"learn_single_regressor.m.bk <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model","children":[{"title":"LearnedCascadedModel.mat <span style='color:#111;'> 42.28MB </span>","children":null,"spread":false},{"title":"w300_DataVariation.mat <span style='color:#111;'> 340B </span>","children":null,"spread":false},{"title":"w300_ShapeModel.mat <span style='color:#111;'> 46.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_training.m <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"common","children":[{"title":"desc","children":[{"title":"hog.m <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"raw.m <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"xx_sift.mexa64 <span style='color:#111;'> 13.12KB </span>","children":null,"spread":false},{"title":"local_descriptors.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"hog.m~ <span style='color:#111;'> 585B </span>","children":null,"spread":false}],"spread":true},{"title":"eval","children":[{"title":"rms_err.m <span style='color:#111;'> 788B </span>","children":null,"spread":false},{"title":"rms_err.m~ <span style='color:#111;'> 300B </span>","children":null,"spread":false}],"spread":true},{"title":"vec","children":[{"title":"shape_2_vec.m <span style='color:#111;'> 122B </span>","children":null,"spread":false},{"title":"vec_2_shape.m <span style='color:#111;'> 122B </span>","children":null,"spread":false}],"spread":true},{"title":"manifold","children":[{"title":"mean_covariance_of_data.m <span style='color:#111;'> 161B </span>","children":null,"spread":false},{"title":"PCA.m <span style='color:#111;'> 651B </span>","children":null,"spread":false}],"spread":true},{"title":"align","children":[{"title":"init_face_location.m <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"detect_face.m <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"invert_aligned_shape.m <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"quad2Box.m <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"align_to_mean_shape.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"align_shape.m <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"bounding_box.m~ <span style='color:#111;'> 372B </span>","children":null,"spread":false},{"title":"normalize_rest_shape.m <span style='color:#111;'> 915B </span>","children":null,"spread":false},{"title":"normalize_first_shape.m <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"cascade_img_scale.m <span style='color:#111;'> 127B </span>","children":null,"spread":false},{"title":"normalize_data.m <span style='color:#111;'> 343B </span>","children":null,"spread":false},{"title":"resetshape.m <span style='color:#111;'> 862B </span>","children":null,"spread":false},{"title":"align_init_shape.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"getbbox.m <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"get_correct_region.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"random_init_position.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"get_correct_region.m~ <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"random_init_position.m.bk <span style='color:#111;'> 844B </span>","children":null,"spread":false},{"title":"bounding_box.m <span style='color:#111;'> 592B </span>","children":null,"spread":false}],"spread":false},{"title":"err","children":[{"title":"calc_shape_error.m <span style='color:#111;'> 250B </span>","children":null,"spread":false}],"spread":true},{"title":"regression","children":[{"title":"linreg.m <span style='color:#111;'> 612B </span>","children":null,"spread":false},{"title":"linreg.m~ <span style='color:#111;'> 642B </span>","children":null,"spread":false},{"title":"regress.m <span style='color:#111;'> 109B </span>","children":null,"spread":false}],"spread":true},{"title":"graphic","children":[{"title":"draw_shape.m <span style='color:#111;'> 584B </span>","children":null,"spread":false}],"spread":false},{"title":"string","children":[{"title":"strsplit.m <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"flip","children":[{"title":"flipshape.m <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false}],"spread":false},{"title":"io","children":[{"title":"annotation_load.m <span style='color:#111;'> 362B </span>","children":null,"spread":false},{"title":"load_data.m~ <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"w300_annotation_load.m~ <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"load_data.m <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"lfpw_annotation_load.m <span style='color:#111;'> 767B </span>","children":null,"spread":false},{"title":"w300_annotation_load.m <span style='color:#111;'> 441B </span>","children":null,"spread":false},{"title":"helen_annotation_load.m <span style='color:#111;'> 527B </span>","children":null,"spread":false},{"title":"load_all_data2.m <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"load_all_data.m <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"setup.m <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"facealignment~ <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"facealignment <span style='color:#111;'> 56B </span>","children":null,"spread":false}],"spread":true},{"title":"do_testing.m <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"vlfeat","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明