基于改进的U-Net眼底视网膜血管分割

上传者: 38667849 | 上传时间: 2022-04-03 17:39:44 | 文件大小: 1.3MB | 文件类型: -
针对视网膜血管图像特征信息复杂程度高,现有算法存在微血管分割较低和病理信息误分割等问题,提出一种融合DenseNet和U-Net网络的血管分割模型。首先,通过限制对比度直方图均衡化和filter滤波对图像进行血管增强处理;其次,利用局部自适应gamma提升图像亮度信息并降低伪影的干扰;再次,由多尺度形态学滤波局部增强微血管特征信息;最后,利用U型密集链接模块进行分割。该算法在DRIVE数据集上实验,其平均准确率、灵敏度和特异性分别高达96.74%、81.50%和98.20%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明