Senta情感分析系统-其他

上传者: 38667403 | 上传时间: 2022-12-15 12:14:11 | 文件大小: 1.11MB | 文件类型: ZIP
Senta是一款百度开源的情感分析系统。 情感分析旨在自动识别和提取文本中的倾向、立场、评价、观点等主观信息。它包含各式各样的任务,比如句子级情感分类、评价对象级情感分类、观点抽取、情绪分类等。情感分析是人工智能的重要研究方向,具有很高的学术价值。同时,情感分析在消费决策、舆情分析、个性化推荐等领域均有重要的应用,具有很高的商业价值。 近日,百度正式发布情感预训练模型SKEP(Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis)。SKEP利用情感知识增强预训练模型, 在14项中英情感分析典型任务上全面超越SOTA,此工作已经被ACL 2020录用。 为了方便研发人员和商业合作伙伴共享效果领先的情感分析技术,本次百度在Senta中开源了基于SKEP的情感预训练代码和中英情感预训练模型。而且,为了进一步降低用户的使用门槛,百度在SKEP开源项目中集成了面向产业化的一键式情感分析预测工具。用户只需要几行代码即可实现基于SKEP的情感预训练以及模型预测功能。 SKEP SKEP是百度研究团队提出的基于情感知识增强的情感预训练算法,此算法采用无监督方法自动挖掘情感知识,然后利用情感知识构建预训练目标,从而让机器学会理解情感语义。SKEP为各类情感分析任务提供统一且强大的情感语义表示。 百度研究团队在三个典型情感分析任务,句子级情感分类(Sentence-level Sentiment Classification),评价对象级情感分类(Aspect-level Sentiment Classification)、观点抽取(Opinion Role Labeling),共计14个中英文数据上进一步验证了情感预训练模型SKEP的效果。实验表明,以通用预训练模型ERNIE(内部版本)作为初始化,SKEP相比ERNIE平均提升约1.2%,并且较原SOTA平均提升约2%。

文件下载

资源详情

[{"title":"( 138 个子文件 1.11MB ) Senta情感分析系统-其他","children":[{"title":"说明.htm <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"download_en_data.sh <span style='color:#111;'> 118B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明