上传者: 38665822
|
上传时间: 2022-05-15 10:36:24
|
文件大小: 490KB
|
文件类型: PDF
深度神经网络由于结构类似于生物神经网络,因此拥有高效、精准抽取信息深层隐含特征的能力和能够学习多层的抽象特征表示,且能够对跨域、多源、异质的内容信息进行学习等优势。提出了一种基于多用户-项目结合深度神经网络抽取特征、自学习等优势实现信息个性化推荐的模型,该模型通过对输入多源异构数据特征进行深度神经网络学习、抽取,再融合协同过滤中的广泛个性化产生候选集,然后通过二次模型学习产生排序集,实现精准、实时、个性化推荐。通过真实数据集对模型评估实验,实验结果表明,该模型能够很好地学习、抽取用户隐特征,并且能够一定程度上解决传统推荐系统稀疏性、新物品等问题,同时实现了更加精准、实时、个性化的推荐。