上传者: 38665775
|
上传时间: 2021-08-11 14:57:24
|
文件大小: 429KB
|
文件类型: PDF
交互式多模型扩展卡尔曼滤波(IMM-EKF)算法是解决机动载体运动模型不确定的定位问题的次优算法,在载体做模型确定的运动时该方法仍得到次优解且浪费运算资源。针对IMM-EKF算法的此类缺陷,采用离线训练的概率神经网络模型,实时判断当前运动模型分类,在运动模型确定的状态下选择对应的单一模型进行运算,而在运动模型不确定的状态下选择IMM-EKF算法,既保证定位精度,又减少了不必要的运算量。仿真对比实验验证了相比于IMM-EKF算法,新算法在精度方面的优势。