matlab界面选择代码-Deep-neural-network-Transfer-learning-EEG-MEG-:深层神经网络转移学习E

上传者: 38663608 | 上传时间: 2022-04-04 10:47:47 | 文件大小: 18KB | 文件类型: -
matlab界面选择代码深层神经网络转移学习EEG-MEG- 该代码具有两个基于SGD和adam的CNN模型(模型1和2)。 还包括维格纳维尔(Wigner-ville)分发代码 功能:RAW EEG,短时傅立叶变换,Wigner-ville分布 深度学习参数适应:贝叶斯优化 平台:Matlab,Python 该代码用于复制题为“单一模型深度学习方法可以增强基于EEG的脑机接口的分类精度吗?”的论文。 如果您使用的是部分代码,请引用这些论文: 罗伊·苏吉特(Roy,Sujit)等。 “通道选择改善了基于MEG的脑机接口。” 2019年第9届国际IEEE / EMBS神经工程会议(NER)。 IEEE,2019年。 Roy,S.,McCreadie,K.和Prasad,G.,2019年10月。 单一模型深度学习方法能否提高基于EEG的脑机接口的分类精度? 在2019年IEEE系统,人与控制论国际会议(SMC)(pp.1317-1321)中。 IEEE。 正在开发中

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明