一种面向高维数据的迭代式Lasso特征选择方法

上传者: 38663193 | 上传时间: 2021-12-08 17:49:09 | 文件大小: 220KB | 文件类型: -
Lasso方法与其他特征选择一样,对高维海量或高维小样本数据集的特征选择容易出现计算开销过大或过学习问题(过拟合)。为解决此问题,提出一种改进的Lasso方法:迭代式Lasso方法。迭代式Lasso方法首先将特征集分成K份,对第一份特征子集进行特征提取,将所得特征加入第二份,再对第二份特征进行特征提取;然后将所得特征加入第三份,依次迭代下去,直到第K份,得到最终特征子集。实验表明,迭代式Lasso方法能够很好地对高维海量或高维小样本数据集进行特征选择,是一种有效的特征选择方法。目前,此方法已经很好地应用在高维海量和高维小样本数据的分类或预测模型中。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明