最新版学习笔记—Python机器学习基础教程(4)线性模型(分类)—附完整代码

上传者: 38663169 | 上传时间: 2021-11-13 16:09:57 | 文件大小: 57KB | 文件类型: -
线性模型1. 用于二分类的线性模型2. 用于多分类的线性模型 线性模型也同样应用于分类问题。 1. 用于二分类的线性模型 首先我们看一下二分类,预测公式: 这个公式上一篇博文里面的线性回归公式非常相似,但是我们没有返回特征的加权求和,而是为预测设置了阈值(0)。如果函数值小于0,我们就预测类别-1;若函数值大于0,我们就预测类别+1。 最常见的两种线性分类算法是Logistic回归和线性支持向量机(线性SVM) 在这里我们将两个模型应用在forge数据集上,并将线性模型找到的决策边界可视化。 运行代码如下: from sklearn.linear_model import LogisticR

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明